The response of elderly human articular cartilage to mechanical stimuli in vitro.

نویسندگان

  • M S Plumb
  • R M Aspden
چکیده

OBJECTIVE To investigate the biosynthetic response of elderly human femoral head articular cartilage to mechanical stimulation in vitro and its variation with site. METHOD Full-depth cartilage biopsies of articular cartilage were removed from defined sites on 10 femoral heads from patients aged 68-95 years. Cartilage explants were subjected to either static or cyclic (2s on/2s off) loading in unconfined compression at a stress of 1MPa for 24h, or no load. Metabolic activity was assessed by adding medium containing (35)S-sulphate and (3)H-leucine during the last 4h of loading and measuring the incorporated radioisotope. Matrix composition was measured in terms of the amounts of collagen, sulphated glycosaminoglycans (GAG) and water content. RESULTS Loading of elderly human articular cartilage at 1MPa significantly inhibited incorporation of (35)S-sulphate (P=0.023) into cartilage explants. Pairwise comparisons showed that the difference in incorporation was only for static loading (43% decrease compared to unloaded) (P<0.05). (3)H-leucine incorporation appeared to follow the same trends but neither static nor cyclic load was significantly different from control (P=0.31). Significant topographical variation was found for % GAG wet and GAG:collagen but not water content, % GAG dry or collagen. Isotope incorporation rates were in the order anterior>superior>posterior. CONCLUSION Static loading inhibits matrix biosynthesis in elderly human cartilage, and cyclic loading is not stimulatory. This is in contrast to previous studies on young bovine tissue where cyclic loading is stimulatory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes

Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...

متن کامل

CD147 (Extracellular Matrix Metalloproteinase Inducer-EMMPRIN) Expression by Human Articular Chondrocytes

Background: Integrins are a family of transmembrane proteins that allow communication between the extracellular matrix and the interior of cells. Chondrocytes, cells of articular cartilage, express integrins and these molecules appear to have a variety of roles including mechanotransduction. Integrins are known to associate with a number of accessory molecules such as CD147 that may act to regu...

متن کامل

Differential Immunohistochemical Expression Pattern of Galectin-3 in Normal and Osteoarthritic Human Articular Cartilage

Background: Previous studies have shown that Galectin-3, a member of lectin family, is expressed in developing cartilage in mouse embryo and also in growth plate of long bones.   Objective: In the present work, the expression pattern of Galectin-3 in normal and various grades of osteoarthritic (OA) human articular cartilage has been studied.   Methods: Using immunohistochemistry and standard we...

متن کامل

The Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response

Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...

متن کامل

What quantitative mechanical loading stimulates in vitro cultivation best?

Articular cartilage has limited regeneration capacities. One of the factors that appear to affect the in vitro cultivation of articular cartilage is mechanical stimulation. So far, no combination of parameters has been identified that offers the best results. The goal is to review the literature in search of the best available set of quantitative mechanical stimuli that lead to optimal in vitro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Osteoarthritis and cartilage

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 2005